Joint Commission Resources
Quality & Safety Network (JCRQSN)

Resource Guide

Life Safety Code (LSC) and Statement of Conditions (SOC): An Update

July 27, 2017
About Joint Commission Resources

Joint Commission Resources (JCR) is a client-focused, expert resource for healthcare organizations. It partners with these organizations, providing consulting services, educational services, and publications to assist in improving the quality, safety, and efficiency of healthcare services, and to assist in meeting the accreditation standards of The Joint Commission. JCR is a subsidiary of The Joint Commission, but provides services independently and confidentially, disclosing no information about its clients to The Joint Commission or others. Visit our web site at: www.jcrinc.com.

Disclaimers

Joint Commission Resources educational programs and publications support, but are separate from, the accreditation activities of The Joint Commission. Attendees at Joint Commission Resources educational programs and purchasers of Joint Commission Resources publications receive no special consideration or treatment in, or confidential information about, the accreditation process.

The information in this Resource Guide has been compiled for educational purposes only and does not constitute any product, service, or process endorsement by The Joint Commission or organizations collaborating with The Joint Commission in the content of these programs.

NOTE: Interactivation Health Networks is the distributor of the Joint Commission Resources Quality & Safety Network series and has no influence on the content of the series.

©2017 Joint Commission Resources. The purchaser of this educational package is granted limited rights to photocopy this Resource Guide for internal educational use only. All other rights reserved.

Requests for permission to make copies of this publication for any use not covered by these limited rights should be made in writing to: Department of Education Programs, Joint Commission Resources, One Renaissance Boulevard, Oakbrook Terrace, IL 60181.
TABLE OF CONTENTS

Program Summary ... 4
Program Outline .. 5
Continuing Education (CE) Credit .. 6
Principles of Door Safety Inspections .. 7
Checklist for Inspecting Swinging Fire-Rated Doors with Self-Closing Operation ... 8
Checklist for Inspecting and Operational Testing of Swinging Fire-Rated Doors with Self-Closing,
 Automatic-Closing, and Powered Operation ... 10
Top 10 Rules for Maintaining Swinging Door Assemblies .. 11
Top 10 Questions to Ask When Selecting Door Assembly Components .. 12
Door Maintenance Priority Levels .. 13
Door Usage Types and Categories .. 14
Doors with Electrified Locking Hardware Components and Functions ... 15
SOC Process Changes Effective August 1 ... 23
Clarifications and Expectations: Revising the Statement of Conditions™ (SOC) .. 24
 PFI Rules, SPFI Rules, Time-Limited Waivers, and the End of the 6-Month Grace Period 24
Clarifications and Expectations: Clarifying Changes in the Life Safety Survey Process 28
Appendix A: Resources ... 32
Appendix B: Faculty Biographies ... 33
Appendix C: Continuing Education (CE) Accrediting Bodies .. 35
Appendix D: Discipline Codes Instructions .. 36
Appendix E: Post-Test ... 37
Appendix F: JCRQSN Contact Information .. 39
Program Summary

This page provides an overview of the program content and learning objectives. Please refer to the Table of Contents and Program Outline for a detailed list of the topics covered. The information included in this Resource Guide is intended to support but not duplicate the video presentation content. There may be additional information available online for this topic.

Program Description

Recent changes identified by the Centers for Medicare & Medicaid Services (CMS) have resulted in modifications to the Statement of Conditions™ (SOC) component of The Joint Commission survey process. The changes, which became effective August 1, 2016, also affect the survey of “Life Safety: (LS) chapter requirements in the Comprehensive Accreditation Manuals for the ambulatory care, behavioral healthcare, critical access hospital, hospital, home care, and nursing care center programs.

As of August 1, 2016, important survey process changes include:
- All LS chapter deficiencies identified during survey will become Requirements for Improvement (RFIs) with a 60-day Evidence of Standards Compliance (ESC).
- For those deficiencies that require more than 60 day, a Time-Limited Waiver process is available.

Through in-depth expert discussion and featured case studies, this 60-minute live event analyzes and explains the changes to the SOC and LS chapter, with an emphasis on the process for completing a Time-Limited Waiver. Common Life Safety compliance issues related to doors are also covered.

Program Objectives

After completing this activity, the participant should be able to:
1. Identify the modifications to the Statement of Conditions (SOC).
2. Describe the process for the completion of a Time-Limited Waiver.
3. Identify common compliance concerns related to Life Safety, emphasizing issues with doors.

Target Audience

This activity is relevant to all hospital staff, medical staff, volunteers, and contracted staff, particularly those responsible for Life Safety-related activities, including safety officers and committees, engineering staff, facility managers, department managers and supervisors, performance improvement (PI) staff, training and education staff, and risk managers.
Program Outline

Life Safety Code (LSC) and Statement of Conditions (SOC): An Update
July 27, 2017

I. Introduction
 A. Program Content
 B. Objectives
 C. Faculty

II. Life Safety Compliance: Door Issues

III. Completing the Time-Limited Waiver

IV. Conclusion

V. Post-Program Live Question and Answer Session
 A. Audio only telephone seminar with program faculty – for 30 minutes following the program.
 B. Call 1-888-206-0090; enter conference code: 7925428.
 Or e-mail your questions or comments to: Questions@jcrqsn.com

<table>
<thead>
<tr>
<th>Program Broadcast Time</th>
<th>Eastern:</th>
<th>2:00 p.m. to 3:00 p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Central:</td>
<td>1:00 p.m. to 2:00 p.m.</td>
</tr>
<tr>
<td></td>
<td>Mountain:</td>
<td>12:00 p.m. to 1:00 p.m.</td>
</tr>
<tr>
<td></td>
<td>Pacific:</td>
<td>11:00 a.m. to 12:00 p.m.</td>
</tr>
</tbody>
</table>

Program Question and Answer Session

During the live airing of this program on July 27, 2017, you may be able to talk directly with the faculty when prompted by the program’s host. After this date, your message will be forwarded to the appropriate personnel.

Immediately following the program, we invite you to join in a live discussion with the program presenters. Call 1-888-206-0090 and enter Conference Code: 7925428 to be included in the teleconference.

To submit your question ahead of time or for additional details, please send an e-mail to questions@jcrqsn.com. If you submit your questions after this date, your message will be forwarded to the appropriate personnel.

You can also receive answers to your questions by calling The Joint Commission’s Standards Interpretation Hotline at 630-792-5900, option 6.
Continuing Education (CE) Credit

After viewing the JCR Quality & Safety Network presentation and reading this Resource Guide, please complete the required online CE/CME credit activities (test and evaluation form). The test measures knowledge gained and/or provides a means of self-assessment on a specific topic. The evaluation form provides us with valuable information regarding your thoughts on the activity’s quality and effectiveness.

Prior to the Program Presentation Day
1. Login to the JCRQSN Learning Management System web site at http://jcrqsn.twnlms.com/
 • Select the course for this program, Life Safety Code (LSC) and Statement of Conditions (SOC): An Update
 • When prompted, choose Access Content to confirm that you would like to access this program.
2. Display and print the desired documents (Resource Guide, etc.).

Online Process for CE/CME Credit
1. Read the course materials and view the entire video presentation.
2. Login to the JCRQSN Learning Management System web site at http://jcrqsn.twnlms.com/
 Note: This assumes you have already been enrolled in the program, as described above.
4. If you did not view the broadcast video presentation, view it online.
5. Complete the online post test (see Appendix E).
 • You have up to three attempts to successfully complete the test with a minimum passing score of 80%.
 • Physicians must take the post test to obtain credit.
6. Complete the program evaluation form.
7. On the top-left corner of the main course page, you will see your completion status in the Status block.
8. Select Get Certificate from within the Status block to print your completion certificate.
 Note: Certificates for other completed courses can be printed from the “My History” tab, as well.
Principles of Door Safety Inspections

As you learn more about inspecting, testing, and maintaining of swinging egress and fire door assemblies, keep the following principles in mind:

1. **Swinging door assemblies, regardless of fire rating, were installed in accordance with the codes that were in effect at the time of construction.** Perhaps the most important principle to remember regarding inspecting, testing, and maintaining swinging door assemblies is that the doors in your building were installed to meet the code requirements that were in effect at the time of construction.

 While it is true that many of the fundamental requirements for swinging doors are the same for doors of any generation, modern doors are subject to additional requirements that did not exist in the codes at the time older doors were installed. For example, marking of glass and glazing in fire-rated door assemblies first appeared in the 1992 edition of NFPA 80. Likewise, clear wire glass was the only type of glazing material permitted to be installed in fire-rated doors for many decades. Conversely, newly installed fire-rated doors with unmarked clear wire glazing do not comply with today's codes. Consequently, older existing doors (e.g., installed circa. 1990) with the same glazing arrangement should be considered compliant since it was permitted at the time of installation.

 For these reasons, the persons involved in inspecting, testing, and maintaining swinging doors need to bear in mind what the applicable code requirements were at the approximate time of installation. In large buildings and facilities, it is common to see two or more generations of swinging doors that were installed over time as the buildings were expanded and renovated.

2. **Fire-rated door assemblies provide the appropriate level of fire protection-ratings for the openings in which they are installed.** Unless the occupancy usage has changed or the floorplan has been renovated, you should be able to rely on the original design and construction of the building to provide the appropriate level of fire rating; including swinging door assemblies. In other words, you should not be charged with determining the fire protection rating of the doors in your building. However, you do need to be able to recognize incorrect applications when you discover them. For instance, if you were to find a 3/4-hour (45-minute) fire door with more than 100 in² of glazing in a stair tower door assembly that requires a 1-1/2 hour (90-minute) door—you would need to recognize that the door doesn't have the correct level of fire protection rating for the opening in which it was installed. In this scenario, the original door (with the correct fire rating) was, apparently, replaced with a door of lesser fire rating.

3. **Door assemblies are required to be maintained in working condition throughout the life of their installation.** Swinging door assemblies are component-based systems that are comprised of mechanical components, which are subject to wear and tear over time. Codes require swinging doors to be maintained in working condition. It's a fact that most doors will require some level of maintenance during their service life; some will need more maintenance than others. It's the lack of proper maintenance and care of the doors that allows non-compliance conditions to become more serious issues that need to be cited as deficiencies during inspections.

4. **Capabilities and limitations of today's door assembly components should not be ascribed to older existing components.** This principle is important to bear in mind when inspecting, maintaining, and testing older existing swinging fire doors; especially older fire-rated wood doors. For example, fire pins (aka, thermal pins) are used on many of today's new fire door assemblies—these components have been in use since the early 1990s. Fire-rated doors that were produced before the introduction of fire pins, where never tested for that application. For this reason, fire pins should not be installed on older fire doors without first confirming their installation with the door manufacturer.

5. **AHJs and code officials determine when something is acceptable under the codes.** Only AHJs and other code officials can determine when special conditions, construction, and components meet the requirements of the codes.
Checklist for Inspecting Swinging Fire-Rated Doors with Self-Closing Operation

1. Doors must close and latch from any open position.
2. Where inactive leaves are equipped with carry-open bars, opening inactive leaf opens active leaf far enough to engage door coordinator. Closing of inactive leaf must automatically release active leaf. Active leaf must close and latch.
3. Where door coordinators are present, open active leaf far enough to engage door coordinator. Closing of inactive leaf must automatically release active leaf. Active leaf must close and latch.
Checklist for Operational Testing of Swinging Fire-Rated Doors with Self-Closing Operation

1. Doors must close and latch from any open position.

2. Where inactive leaves are equipped with panic hardware (on non-fire rated doors) or fire exit hardware and carry-open bars and a door coordinator is installed on the door frame, opening inactive leaf opens active leaf far enough to engage door coordinator. Closing of inactive leaf must automatically release active leaf. Active leaf must close and latch under its own power.

3. Where inactive leaves are equipped with automatic or self-latching flush bolts and a door coordinator is installed on the door frame, hold open active leaf far enough to engage door coordinator before opening inactive leaf. Open inactive leaf and allow active leaf to be held open by coordinator. Coordinator must hold active leaf open until inactive leaf returns to closed position. Closing of inactive leaf must automatically release active leaf. Active leaf must close and latch under its own power. Closing of active leaf engages automatic flush bolts, causing inactive leaves to latch.

4. Where inactive leaves are equipped with open back strikes, or both door leaves are equipped with vertical rod panic hardware (on non-fire rated doors) or fire exit hardware, both door leaves must open and close independently. Door coordinators are not required. Overlapping astragals that interfere with the opening or closing of either door leaf are not allowed.

5. Where inactive leaves are equipped with manually operated flush bolts or surface bolts. For the purposes of functional testing, temporarily hold or block open active leaf. Release flush bolts (or surface bolts) and test closing function of inactive leaf. Upon completion of functional testing, verify flush bolts (or surface bolts) are properly engaged in top and bottom strikes. Allow active leaf to close and latch under its own power.

As doors open and close, watch top of hinge jamb for movement on the wall.

Both door leaves must close completely and latch. (See Notes 1, 2, 3, 4 and 5 below.)
Checklist for Inspecting and Operational Testing of Swinging Fire-Rated Doors with Self-Closing, Automatic-Closing, and Powered Operation
Top 10 Rules for Maintaining Swinging Door Assemblies

Whenever you need to work on swinging door assemblies, choose replacement components, and add new doors, refer to these rules frequently. Following these rules will help you maintain your swinging doors in compliance with the codes.

Rule #1 Selecting door assembly components that are appropriate to the type, usage, and function of the door is essential for the service life of the assembly.

Rule #2 Only components that are labeled and/or listed for use on fire-rated door assemblies can be installed on fire doors, in accordance with their individual published listing.

Rule #3 Not all fire-rated door components can be used on all fire door assemblies.

Rule #4 All labeled and/or listed components can be installed on non-fire-rated door assemblies.

Rule #5 The published listing of a door leaf, regardless of material, determines the capabilities, design, and applications of the door and the assembly’s fire rating.

Rule #6 Before performing work, other than drilling holes for fasteners, verify the structural integrity of the component, fire-rating (when applicable), and warranty will not be compromised or invalidated.

Rule #7 Only work that is expressly permitted in NFPA 80, in accordance with the manufacturer’s installation instructions and the individual published listing of the component(s) being modified, is permitted to be done during installation of fire-rated door assemblies.

Rule #8 Labels on fire-rated door frames, doors, and hardware components must be present and legible at all times; avoid painting over labels—do not remove labels for any reason.

Rule #9 Doors must open and close easily and freely, close safely and completely, and (where required by code or application) latch positively.

Rule #10 Swinging egress and fire doors must allow free egress under fire and other panic-inducing emergencies.
Top 10 Questions to Ask When Selecting Door Assembly Components

Asking the right questions, at the right time, is an important step in gathering information you need to make informed decisions. Use the following questions to determine which door assembly components are the most appropriate for the specific door assembly you are working on.

1. Is this component labeled or listed for use on fire-rated door assemblies?
2. Can this component be used on doors of all levels of fire-ratings?
3. What limitations or restrictions does this component have?
4. Does this component have an extended warranty?
5. What is the expected service life of this component?
6. What type of maintenance does this component require after installation?
7. Does installing this component require work other than drilling holes for fasteners?
8. Will installing this component interfere with other door hardware components?
9. Where is the label or marking on this component?
10. Does this component comply with code requirements of the door?
Door Maintenance Priority Levels

The following table ranks the maintenance priority of doors from the worst condition (e.g., Level 1 Critical, which is the highest priority) to acceptable condition (e.g., Level 4 Minimal, which is the lowest priority).

Maintenance and Acceptance Testing records are required upon completion of the work on fire-rated doors.

Table 4.1: Door Assembly Maintenance Priority Levels

<table>
<thead>
<tr>
<th>Priority Level</th>
<th>Nature of Repair/Service Work</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 Critical</td>
<td>Replacing door frames and/or entire door assemblies.</td>
<td>This work should be completed before all other maintenance work on the assembly.*</td>
</tr>
<tr>
<td>(Highest Priority)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2 Extensive</td>
<td>Repairs involving securely anchoring door frames, replacing large components like door leaves and glazing materials, replacing door hardware with different components (not like-for-like) and repairing non-fastener holes.</td>
<td>This work should be completed before Level 3 work on the assembly.* Some work might be considered to be a field modification in accordance with NFPA 80.</td>
</tr>
<tr>
<td>(High Priority)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 3 Moderate</td>
<td>Routine repairs involving tightening/ replacing fasteners, replacing (like-for-0like) hardware components, and filling unused fastener holes.</td>
<td>This work can be performed at any time, and should be completed before Level 4 work on the assembly.*</td>
</tr>
<tr>
<td>(Ordinary Priority)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 4 Minimal</td>
<td>Cosmetic and superficial repairs. Routine maintenance service work, such as lubricating movable hardware components.</td>
<td>This work can be performed at any time. Maintenance and Acceptance Testing records are not required for fire-rated doors in this category.</td>
</tr>
<tr>
<td>(Lowest Priority)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Maintenance and Acceptance Testing records are required upon completion of the work on fire-rated doors.
Door Usage Types and Categories

- **Category 3, Ordinary Usage**
 - 1,000 to 36,500 cycles per year (3 to 100 cycles per day).
 - Estimated service life: 20 to 25 years.*
 - **Type A** door assemblies should be monitored bi-monthly (more frequently in some cases).
 - **Type B** door assemblies should be monitored on a monthly schedule.
 - **Type C** door assemblies should be monitored on a weekly schedule.

- **Category 4, High Usage**
 - 36,500 to 150,000 cycles per year (100 to 400 cycles per day).
 - Estimated service life: 10 to 20 years.*
 - **Type A** door assemblies should be monitored bi-weekly (weekly in some cases).
 - **Type B** and **Type C** door assemblies should be monitored on a weekly schedule.

- **Category 5, Very High Usage**
 - 150,000 to 400,000 cycles per year (400 to 1,100 cycles per day).
 - Estimated service life: 5 to 10 years.*
 - **Type A**, **Type B**, and **Type C** door assemblies should be monitored weekly (every 2-3 days in some cases).

- **Category 6, Extremely High Usage**
 - Over 400,000 cycles per year (over 1,100 cycles per day).
 - Estimated service life: Up to 5 years.*
 - **Type A**, **Type B**, and **Type C** door assemblies should be monitored every 2 to 3 days (daily in some cases).

* Estimated service life assumes the door assemblies are comprised of components, appropriate to the type and area of the building served by the door, which are properly installed, adjusted, and well maintained. Over time, some components will require servicing and/or replacement. Doors subjected to abusive conditions and usage, incidental or prolonged, have shorten service lives.

Table 3.1: Recommended Monitoring Frequency

<table>
<thead>
<tr>
<th>Frequency of Use</th>
<th>Average Cycles/Day</th>
<th>Average Cycles/Year</th>
<th>Door Usage Category</th>
<th>Type A Door</th>
<th>Type B Door</th>
<th>Type C Door</th>
<th>Estimated Service Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>Less than 1</td>
<td>Less than 365</td>
<td>1</td>
<td>Annually</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Over 30 years</td>
</tr>
<tr>
<td>Low</td>
<td>1-3</td>
<td>365 - 1,000</td>
<td>2</td>
<td>Semi-Annually²</td>
<td>Monthly²</td>
<td>Weekly</td>
<td>25 - 30 years</td>
</tr>
<tr>
<td>Ordinary</td>
<td>3 - 100</td>
<td>1,000 - 36,500</td>
<td>3</td>
<td>Bi-Monthly²</td>
<td>Monthly²</td>
<td>Weekly</td>
<td>20 - 25 years</td>
</tr>
<tr>
<td>High</td>
<td>100 - 400</td>
<td>36,500 - 150,000</td>
<td>4</td>
<td>Bi-Weekly²</td>
<td>Weekly²</td>
<td>Weekly</td>
<td>10 - 20 years</td>
</tr>
<tr>
<td>Very High</td>
<td>400 - 1,100</td>
<td>150,000 - 400,000</td>
<td>5</td>
<td>Weekly</td>
<td>2 - 3 days</td>
<td>2 - 3 days</td>
<td>5 - 10 years</td>
</tr>
<tr>
<td>Extremely High</td>
<td>Over 1,100</td>
<td>Over 400,000</td>
<td>6</td>
<td>2 - 3 days</td>
<td>2 - 3 days</td>
<td>2 - 3 days</td>
<td>Up to 5 years</td>
</tr>
</tbody>
</table>

1. Estimated service life assumes the door assemblies are comprised of components, appropriate to the type and area of the building served by the door, which are properly installed, adjusted, and well maintained. Over time, some components will require servicing and/or replacement. **Doors subjected to abusive conditions and usage, incidental or prolonged, have shorten service lives.**
2. Frequency of monitoring should be increased in cases where door assemblies are subjected to abusive conditions and usage.
3. **Type A** doors are comprised of mechanical hardware components and functions only.
4. **Type B** doors are comprised of electrified and mechanical hardware components that include the following functions and systems:
 - automatic-closing doors;
 - power-operated doors;
 - fail-safe (electric lock) and fail-secure (electric unlock) locking functions;
 - alarmed exit doors;
 - delayed egress locking systems;
 - magnetic locking systems; and,
 - pneumatic/electric bolts.
5. **Type C** doors have a high consequence of failure risk that requires more frequent monitoring.
Doors with Electrified Locking Hardware Components and Functions

Doors with electrified locking hardware functions are found on nearly every type of modern building. Electrified hardware functions can be used to control who enters a building or space (e.g., access control), as well as to automate door operation such as opening doors automatically. The codes have provisions for doors with electrified hardware applications, especially when the electrified functions lock doors against egress.

Electrified hardware functions can be used on fire-rated and non-fire rated doors. When the doors are fire-rated, all of the electrified hardware components must be labeled and listed for use on fire door assemblies—Rule #2.

It is important to know that electrified hardware components can carry multiple listings (e.g., fire ratings and electrical shock hazard and cannot be used on fire doors.

Electrified Hardware Components
There are many types of electrified hardware components that can be used on swinging door assemblies. Electrified locking functions. In mortise and bored locks, electrified trim (e.g., levers and knobs on) on fire exit hardware and panic hardware devices, electric strikes, jamb actuated mortise locks, and magnetic locks. Fire exit hardware and panic hardware devices have additional electrified functions like electric dogging, electric latch retraction, alarmed exit, and delayed egress functions. Electric door operators and automatic door releases closers and hold-open devices are more types of electrified hardware components. Auxiliary items such as touch sense bars, power transfer devices, power supplies, motion detectors, card readers, proximity readers, keypads, biometric readers, and door position switches (aka, contact switches). Accessories like timers, relays, and battery backup power are available for some electrified hardware components.

Most electrified door hardware products require low voltage (e.g., 12 and 24 AC/DC) to function. Some electrified components that are frame mounted (e.g., door operators) require 120 VAC current to function.

It is not possible to cover each of the electrified hardware components and their uses in detail in this handbook. Suffice it to say that electrified hardware applications on swinging doors range from basic to very sophisticated and complex systems. Codes contain provisions for electrified hardware applications, their functions, and limitations; all of which need to be coordinated to ensure people are able to safely use them under normal and emergency conditions. Following are overviews of each type of electrified hardware components.

A. Power Transfer Devices.
Somewhat components are designed to pass electricity from door frames to doors; these are called power transfer devices. For example, modified hinges have internal wires that connect low-voltage (e.g., 12 and 24 volt AC/DC) power to door mounted electrified components. The advantage of using through-wire hinges is that the wiring is completely concealed in the door frames and doors; reducing the likelihood of tampering and vandalism. There are also dedicated power transfer devices that can be used on most door assemblies. While the wiring is concealed from view, they have a telescoping tube between the door frames and doors that is visible when the doors are opened. The main advantage of dedicated power transfer devices is that they can pass more (and larger gage) wires than hinges. Through-wire hinges and dedicated power transfer devices are available in labeled and listed models, allowing their use on fire-rated doors.

Electrified hardware components that become unlocked upon loss of power are called fail-safe; meaning people are able to open the door from the egress side of the assembly (e.g., magnetic locks).

Door loops are one type of dedicated power transfer device. Door loops are externally mounted, one end attaches to the face of the door frame and the other end attaches to the face of the door. Most door loops are not labeled for use on fire-rated doors.

B. Electrified Mortise and Bored Locks.
Electrified locking functions are available for
mortise and bored locks. In addition to locking functions, locks are available with internal switches (aka, request-to-exit or signal switches) that are used to integrate levers and knobs with other electrified hardware components (e.g., magnetic locks). Mortise locks are available with internal switches that monitor the position of latch bolts (aka, latch bolt monitoring); this feature is sometimes needed to ensure a door is securely latched.

Codes require electrified locking hardware devices to have default conditions that either become unlocked or locked when electrical power is turned off. Electrified hardware components that become unlocked upon loss of power are called fail-safe; meaning people are able to open the door from the egress side of the assembly (e.g., magnetic locks). Electrified hardware components that become locked up on loss of power are called fail-secure; meaning that people can open doors from the egress side, but doors remain locked against entry.

Electrified hardware components that become locked upon loss of power are called fail-secure; meaning that people can open doors from the egress side, but doors remain locked against entry.

Electrified mortise and bored locks and fire exit hardware and panic hardware devices are available the levers and knobs (on the entry side) that are electrically-controlled; they can be fail-safe (meaning they unlock) or fail-secure (meaning they lock) when power is turned off or lost. In both cases, electrified locking functions like these can be used on fire-rated doors since the latch bolts remain securely (positively) engaged in their strikes.

Some models of electrified mortise and bored locks are battery-powered self-contained systems that include keypads to accept PIN codes and/or card readers. Many of these types of electrified locks are labeled and listed for use on fire-rated doors; and, most are fail-secure (meaning they lock against entry) when the batteries run down. Preparing doors to accept these types of electrified hardware locking components might fall under the category of field modification work when it requires more than drilling round holes for fasteners and function holes.

C. Electric Strikes.

Electric strikes are a type of electrified locking device that can be used on swinging door assemblies. They are used in place of the standard strikes that come with latching door hardware components. Mortise and bored locks, fire exit hardware, and panic hardware devices need to have mechanically locked levers, knobs, or other pull trims on the entry side of the doors.)

Like electrified mortise and bored locks, electric strikes are available in fail-safe (unlocked when power is off) and fail-secure (locked when power is off). Because fire-rated doors are required to remain positively latched during and after exposure to fire, fail-safe electric strikes cannot be used on fire-rated doors. Fail-secure electric strikes can be used on fire-rated doors, provided the listing of the door frame (or inactive door leaf of paired doors) and the listing of the electric strike allow that application.

D. Jamb Actuated Mortise Locks.

Jamb actuated mortise locks are a hybrid of mechanical mortise locks and electric strikes. The difference being that jamb (or door frame) mounted strike contains a solenoid that projects and retracts a rod that locks and unlocks the doors respectively. The projected rod depresses a lever inside the mechanical mortise lock that locks the lever or knob on the entry side of the door. When the rod is retracted the lever or knob on the entry side of the door is unlocked. Because the latch bolts remain engaged in their strike plates, jamb actuated locks can be used on fire-rated door assemblies, provided they are listed and the listing of the door frame and door permit their use. These types of mortise locks were originally designed to accommodate locking of stair tower doors in high-rise buildings, but their application can be used anywhere electrified locking is desired. Like other types of electrified locking devices, jamb actuated locks are available in fail-safe (unlocked when power is off) and fail-secure (locked when power is off) functions.

E. Electrified Fire Exit and Panic Hardware.

Fire exit hardware and panic hardware devices are available with several electrified hardware
functions. Electric dogging (e.g., holding the latch bolts in the retracted position electrically) and electric latch retraction (e.g., retracting the latch bolts by motors or solenoids momentarily or for prolonged periods of time) allow doors to be used by pushing or pulling as if no latching devices were installed on the doors. Codes require the doors to become latched under emergency conditions. When power is turned off, the devices automatically release the latch bolts allowing the doors to become latched.

Operable trim (e.g., levers and knobs) on the entry side of doors can be electrically locked or unlocked without unlatching fire exit hardware and panic hardware devices. Like other electrified locking functions, electrified trim is referred to as being fail-safe (unlocked when power is turned off) and fail-secure (locked when power is turned off).

Most recess-mounted door position switches are not labeled or listed for use on fire door assemblies.

The push pads and bars can be equipped with internal switches (e.g., request-to-exit and signal switches) that integrate fire exit hardware and panic hardware devices with other electrified locking components like magnetic locks. When the push pads are depressed, the switches make or break contacts (turn on or off) to complete the necessary function

In addition to the electrified functions we covered, modern style fire exit hardware and panic hardware devices are able to contain special functions like alarmed exiting—“PUSH TO EXIT, ALARM WLL SOUND”—and delayed egress locking systems—“KEEP PUSHING, DOOR WILL OPEN IN 15 SECONDS.” In both cases, these special systems are nearly fully contained within the bodies of the devices. External power supplies, power transfers, credential readers (e.g., card, proximity, keypad, and biometric readers), and door contact switches might be needed to provide additional functions and features.

F. Magnetic Locks.

Magnetic locks are soffit-mounted to door frames and consist of two main components, the magnet and an armature plate. Armature plates are installed on doors, they are designed to be free-floating so that they seat completely against the face of the magnet when it is energized; they are through-bolted to the door, usually.

Wiring passes through holes in the soffit of the door frames. When the door frame is labeled, the back of the frame includes a steel junction box, conduit, and reinforcement plates to accept the fasteners that attach magnetic locks to the frames. For this reason, wiring holes for magnetic locks are not permitted to be drilled in the field by NFPA 80.

G. Door Position Switches.

There are many applications where access control systems need to be able to determine when doors are opened and closed. These applications require the use of door position switches (aka, contact switches) that can detect when doors are in the open or closed positions.

Some models of door position switches are surface mounted to the soffit or face of door frames and other models are recessed into the door rabbets. In either case, when door assemblies are fire-rated door position switches must also be labeled and listed for use on fire doors. Most recess-mounted door position switches are not labeled or listed for use on fire-rated doors.

Recessed door position switches require a large hole of approximately 1-in. in diameter to be cut into the door rabbet of frames; creating a couple of problems for fire-rated doors. First, when holes of this nature are required, the door frames need to be prepared at the factory or in authorized shops under “...the manufacturer’s inspection service and under label service.” NFPA 80 does not allow holes of this type to be drilled or cut into...
labeled door frames in the field as part of the installation process.

NFPA 80 does not allow holes of this type to be drilled or cut into labeled door frames in the field as part of the installation process.

The reason this type of preparation cannot be performed in the field is that most labeled door frames require the installation of steel junction boxes in backs of the frames to prevent open holes into the cavity in the wall or partition above the door assembly; and, steel conduit to protect wiring. Second, the fire rating of the door frame is invalidated when holes for door position switches are drilled or cut into them in the field (regardless of whether the door position switches are fire-rated or not).

Door position switches are comprised of a reed switch that is installed on door frames and a magnetic counterpart that installed on or in the doors. When doors close, magnets cause reed switches to turn off or on (e.g., opening normally-closed contacts—turning off switches, or closing normally-open contacts—turning on switches). Reed switches return to their default conditions (e.g., normally-closed/on and normally-open/off) when doors open.

When it is necessary to use door position switches on fire-rated door assemblies, the best choices are labeled hinges that have built-in switches (e.g., concealed and exposed switches); they are labeled and listed for use on fire-rated doors rated up to 3 hours (180 minutes). These types of hinges are commonly referred to as monitoring hinges. Monitoring hinges are installed in the center or other intermediate hinge locations (not at the top or bottom).

H. Electrified Hardware Preparations in Hollow Metal Door Frames.

Adding electrified hardware components to existing fire-rated hollow metal door assemblies should be considered carefully to avoid invalidating fire ratings of the assemblies. In some cases, it might not be possible to add electrified hardware functions and maintain valid fire ratings.

Preparations for electrified hardware components include attaching steel junction boxes and conduit in the backs of door frames to protect wiring and prevent open holes that might allow fire and smoke to enter cavities in the walls and partitions.

When it is necessary to add electrified hardware functions to existing fire-rated door assemblies, contact the manufacturer(s) of the door frames and doors before modifying the assembly. Remember, NFPA 80 has provisions for authorized field modifications; these provisions might be the best way to go about adding electrified functions to fire-rated door assemblies.

Electrified Hardware Functions

Electrified hardware functions are subject to code requirements, in addition to codes for swinging egress and fire-rated doors. Some electrified hardware systems become very complex due to their integration with fire alarms, detectors, and other building systems.

Codes require exit access, exit, and exit discharge doors to open immediately (under alarm conditions) to allow people to safely evacuate a building or space. For this reason, codes that affect door assemblies with electrified hardware functions are intended to ensure doors unlock in the direction of egress travel.

Unfortunately, phrasing in some of the codes use the word *unlock* without any additional context, which contributes to misunderstanding and misapplication of code requirements for electrified hardware functions. With very few exceptions, codes do not require doors to unlock from the entry side of the assemblies. One such instance where codes require doors to unlock and allow entry are locked stair tower doors (this application is discussed below). Another example of where the codes require doors to allow entry (albeit a mechanical function usually) are rooftop doors. Another unfortunate turn of phrase in some codes is the term access-controlled. When this term first appeared in the codes (circa 1970s) magnetic locks and electric strikes were the main choices for electrified hardware functions. Magnetic locks hold...
doors closed against entry, but they also prevent doors opening for egress, which poses a problem when people need to quickly and safely evacuate a building or space. Typically, a keypad or card reader was installed on the entry side of the doors that allowed people to enter, which led to the term *access-controlled egress door*.

Codes that affect door assemblies with electrified hardware functions are intended to ensure doors unlock in the direction of egress travel.

Over time, the term *access control* has evolved to cover a much broader range of functions, features, systems, and components. Consequently, when code officials (and others) see card readers on entry side of doors they think (correctly) access control as defined by today's industry, but it leads them to apply code requirements to doors with electrified hardware functions that are not the types of access-controlled egress doors addressed in the codes.

Card readers, keypads, and other types of credential readers can be installed on most of the doors with the electrified hardware functions described below. Remember, the presence of card readers or keypads on the entry side of door assemblies does not determine their category of electrified hardware function; it is how the doors are controlled from the egress side that determines their functions.

A. Electrically-Controlled Egress Doors

One of the most common types of electrified hardware functions for door assemblies is referred to as the *electrically-controlled egress door function*. Electrically-controlled egress doors have electrified hardware that locks doors against entry and egress under certain conditions. Generally, magnetic locks are used to lock doors, but there are other latching hardware components attached to the doors that are integrated with the magnetic locks. For example, when fire exit hardware and panic hardware devices are used with magnetic locks, internal switches (aka, request-to-exit switches) detect when the pads and crossbars are depressed; turning off magnetic locks immediately. Similarly, locks (e.g., mortise and bored) can have built-in internal switches that detect when the levers or knobs are rotated, thereby turning off magnetic locks immediately.

Remember, the presence of card readers or keypads...does not determine their category of electrified hardware function; it is how the doors are controlled from the egress side that determines their function.

Unlike another type of electrified hardware function — access-controlled egress doors that are considered to be a type of special locking arrangements — these types of door assemblies do not require motion sensors and redundant manual override controls (e.g., pushbuttons) since door mounted hardware components are connected to the magnetic locks. People exiting through electrically-controlled egress doors are unaware of the magnetic locks.

Loss of power turns off magnetic locks allowing doors to open immediately from the egress side. Because the doors are equipped with other latching hardware components, the doors remain closed, latched, and locked against entry-maintaining security.

Card readers and other types of credential readers can be installed on the entry side of these types of egress doors to allow authorized access to buildings and spaces. Key switches can be used to turn magnetic locks on and off.

It is important to know that electrically-controlled egress doors are not considered to be doors with special locking arrangements (as defined by NFPA 101). Accordingly, they are not subject to code requirements that apply any of NFPA 101’s special locking arrangements.

B. Alarmed Exiting.

Fire-rated and non-fire-rated doors can be equipped with local alarms that sound when the doors are opened. Door exit alarms can be standalone components that are battery powered. They can also be hard-wired into power supplies. Some models of fire hardware and panic hardware

37 See Section 7.2.1.5.6 Electrically Controlled Egress Door Assemblies in NFPA 101 and Section 1010.1.9.9 Electromagnetically Locked Egress Doors in IBC.
devices have internal alarm components that sound when the doors are opened.

Regardless of the type of exit alarm that is installed on a door, the doors allow people to immediately open the door and continue exiting. Loud alarms will sound as soon as the doors begin to open. Signage on the door typically states, “PUSH TO OPEN, ALARM WILL SOUND.”

Card readers and other credential readers can be installed on the entry side (and sometimes on the egress side) that allow doors to be opened without sounding alarms. Remember, the presence of card readers does not mean this type of door assembly is considered to be an access-controlled egress door. No motion detectors or manual release devices are required on the egress side of the doors.

C. Re-Entry from Stairs 38

Locking the stair-side of doors in stair towers creates potentially hazardous conditions during emergency evacuations. In emergencies, people could become entrapped in a stair tower when they cannot reach the level of discharge. For this reason, codes contain provisions that require stair tower doors to allow entry back into the building so that people can move to another exit and continue exiting the building. When stair tower doors are locked, they can be locked mechanically or electrically.

The codes allow a certain number of floors to remain locked mechanically, provided no more than four floors are between floors that allow re-entry to the building. In addition, the top floor or the floor next to the top floor must allow re-entry. Signage is required at each floor that directs people to the nearest levels (above and below) where re-entry is possible.

Where stair tower doors are electrically-locked, they are required to be tied into the fire alarm system that will unlock the doors in emergency conditions. Electrically locked stair tower doors have levers or knobs on the stair tower side that are locked when the power is turned on; they unlock when power is turned off (aka, fail-safe function). The doors remain latched in the closed position but the levers and knobs become unlocked, allowing entry.

D. Delayed Egress Locking Systems 39

The codes allow some egress doors fire-rated and non-fire rated, to temporarily delay people from opening doors. These special locking systems are referred to as delayed egress locking systems.

Delayed egress locking systems can be self-contained in modern style fire exit hardware and panic hardware devices. They can also be contained in special types of magnetic locks.

Codes do not specify which type of delayed egress locking systems are used, only how they function.

Signage on the doors usually states: “PUSH UNTIL ALARM SOUNDS, DOOR CAN BE OPENED IN 15 SECONDS.”

When doors are equipped with delayed egress locking systems, they might also have card readers and other credential readers on the entry side (and sometimes on the egress side) to allow for authorized entry (and egress) without triggering any alarm conditions.

Remember, the presence of credential readers does not mean this type of door assembly is considered to be an access-controlled egress door. No motion detectors or manual release devices are required on the egress side of the doors with delayed egress locking systems.

Once activated, doors unlock in the direction of egress travel—there is no requirement for the doors to unlock from the entry side, unless the door is a stair tower door that needs to allow re-entry. Pushing against the door for no more than 3 seconds causes the alarm to sound, starting the releasing process that cannot be stopped. The doors unlatch in 15 seconds (or 30 seconds where permitted by the AHJ). The alarm continues to sound until it is manually turned off by key. When the system has been activated by pushing against the door, the system is required to be manually reset by key. These systems are tied into the building's fire alarm system and are required to

38 See paragraphs 7.2.1.5.8, 7.2.1.5.8.1, and 7.2.1.5.8.2 in NFPA 101, and Section 1010.1.9.11 Stairway Doors in IBC.

39 See Section 7.2.1.6.1 Delayed-Egress Locking Systems in NFPA 101, and Section 1010.1.9.7 Delayed Egress in IBC.
immediately unlock (in the direction of egress travel) upon actuation of the fire alarm. Delayed egress locking systems are also required to unlock (in the direction of egress travel) immediately upon loss of power to the system. Signage instructing people how to open the doors is required to be posted on the door.

It should be noted that because delayed egress locking systems are one of the special locking arrangements permitted in the codes, they can only be used in certain occupancies. Approved supervised automatic sprinkler systems or approved supervised fire detection systems are required throughout the buildings.

The unintended consequence of access-controlled egress door systems is that they also unlock doors from the entry system...

E. Access-Controlled Egress Doors

Access-controlled egress doors consist of magnetic locking components (or similar locking components like electric and pneumatic bolts) that are not integrated (connected) to any door mounted hardware components. In most cases, these types of doors do not have latching hardware components unless the doors are fire-rated.

Motion detectors are required on the egress side of the doors to detect people as they approach the doors—automatically unlocking the doors in the direction of egress. A second means of releasing magnetic locks is required, which is a push-button that is labeled, “**PUSH TO EXIT.**”

Access-controlled egress doors pose a particular dilemma when trying to balance security and safety from the entry side of the doors and the need to allow people to freely exit through the doors. As stated earlier, codes require doors to unlock in the direction of egress. The unintended consequence of access-controlled egress door systems is that they also unlock doors from the entry side, in most cases. For example, when people move into the field of view of the motion detectors the magnetic locks unlock, allowing the doors to be opened. People on the inside cannot approach (e.g., to verify visitors attempting to enter) the doors without unlocking them, creating a security risk. Latching hardware, if installed, keeps doors closed but the doors can be opened from the entry side unless they are mechanically locked against entry.

On the entry side of the door, card readers (and other credential readers) are used to momentarily deactivate magnetic locks so that the doors can be opened. When latching hardware is mechanically locked, people entering through the doors need to use keys to retract latch bolts after swiping their cards to turn off the magnetic locks.

For these reasons, whenever possible, electrically-controlled egress door systems are a much better choice. Like delayed egress locking systems, access-controlled egress doors are only permitted to be used in occupancies that meet certain requirements.

F. Elevator Lobby Exit Access Door Assembly Locking

Another special locking arrangement that is expressly covered in NFPA 101 is called **elevator lobby access door assembly locking**. That is a lot of words to describe a unique set of conditions that need to be satisfied when there is a desire to add electrified hardware functions to doors that protect enclosed elevator lobbies.

These doors are fire-rated, in fact they are also temperature rise-rated doors that are designed to be kept in the closed position. They are used to control access to the spaces on that floor of the building. For example, a tenant in an office building might lease an entire floor and needs to keep unauthorized people from wandering into its controlled space. The electrified hardware applications are rather broad (very similar to electrified hardware applications of electrically-controlled egress doors). The difference in this case is that the doors could trap people in the elevator lobby and prevent them...
from moving onto the floor and reaching other exits (e.g., stairs). For this reason, there are a host of conditions and integration into other building systems that are necessary for elevator lobby exit access door assembly locking systems.

Because the doors are fire-rated, they are required to have self-closing and positive latching hardware devices that remain latched when the doors become unlocked from the elevator side. Egress is always possible from the building floor side.

G. Wandering Patient Door Locking Systems

Wandering patient door locking systems are not expressly covered in NFPA 101, but the IBC contains provisions and requirements for doors with this type of electrified hardware function. As the name implies, patient locking systems are used to keep ambulatory patients contained within a patient care area of the building (e.g., maternity wards and Alzheimer’s wards). Patients are tagged with wrist or ankle bracelets that contain RFID (radio frequency identification) chips.

Doors are normally closed (and latched, when fire-rated), but unlocked to allow staff and visitors to come and go freely. When patients move close to the egress side of the doors, the doors automatically lock (magnetically). The doors automatically unlock when tagged patients move away from the doors. Nursing staff and other authorized personnel are required to carry cards, keys, and PIN codes that can override the locked doors.

Doors can be locked magnetically or by electrified door latching hardware devices. Alarms are not required, but some systems might include monitoring lights that signal when the doors are locked. A remote switch at a nurses' station or other locations might be needed to override the locking system. Wandering patient systems are required to be tied into automatic sprinkler or automatic fire detection systems.

Monitoring and Inspecting Doors with Electrified Locking Systems

Regardless of which type of electrified hardware function might be installed on swinging doors, they are more susceptible to wear than mechanical hardware only functions. Accordingly, doors with electrified hardware functions should be monitored more frequently to verify they are functioning as required by the codes. When these types of doors are subject to high, very high, and extremely high usage (see Section 3: Door Usage Types and Categories), they are likely to need more routine maintenance service than other doors.

Maintaining doors with electrified hardware locking systems, whether fire-rated or non-fire-rated, should be approached carefully. Malfunctioning, broken, and worn out electifies components should be replaced with identical new components, when possible. When replacing electrified hardware, the following questions might help you determine if it will work with your electrified hardware components.

• Are the power requirements (e.g., voltage and amperage) of the new component the same as the original component?
• Does the new electrified component fit into or over the same doorframe or door preparation?
• Is the new component labeled or listed for use on fire-rated doors?
• Will the new component work with existing wiring and power supply?

When it is time to perform formal safety inspections and testing of doors with electrified hardware locking systems, operational testing needs to be co-ordinated with periodic testing of systems like the building's fire alarm system. In addition to electrified hardware locking systems covered in this section, doors with automatic-closing and power-operated functions warrant monitoring and maintenance more frequently.

42 See Section 1010.1.9.6 Controlled Egress Doors in Groups 1-1 and 1-2 in IBC.
SOC Process Changes Effective August 1

Recent changes identified by the Centers for Medicare & Medicaid Services (CMS) have resulted in modifications to the Statement of Conditions™ (SOC) component of The Joint Commission survey process. The changes, which become effective August 1, 2016, also affect the survey of “Life Safety” (LS) chapter requirements in the Comprehensive Accreditation Manuals for the ambulatory care, behavioral health care, critical access hospital, hospital, home care, and nursing care center programs.

As of August 1, 2016, the survey process will change as follows:

• The open Plan for Improvement (PFI) items will no longer be reviewed by the survey team.
• The open PFI will no longer be imported into the Final Report.
• All LS chapter deficiencies identified during survey will become Requirements for Improvement (RFIs) with a 60-day Evidence of Standards Compliance (ESC). For those deficiencies that require more than 60 days, a Time-Limited Waiver process is available.
• Only equivalency requests related to survey events will be reviewed.

Background

The SOC, which has been part of The Joint Commission’s accreditation process since 1995, was created to provide organizations with a process for developing a plan for improvement to correct self-identified deficiencies within a justifiable time frame based on budgeting and scheduling needs. The self-identified actions were not documented during survey because the SOC already documented the deficiency. The Joint Commission also instituted the Interim Life Safety Measure (ILSM) process to mitigate risks to patient safety while deficiencies were being resolved.

All open, accepted PFI items in the SOC were required to be completed within six months of their projected completion date. Occasionally, an organization would need additional time to complete the corrective action, and The Joint Commission granted extension requests. Many of these extension requests occurred during the six-month automatic extension period.

Changes from CMS

CMS identified these changes required for the SOC process:

• No longer allowing the SOC to document self-identified deficiencies; instead, taking the self-identified deficiencies and converting those to RFIs by the surveyor
• No longer allowing more than 60 days for corrective actions unless approved by the CMS regional office
• The surveyor citing all deficiencies replacing the extension request component with a Time-Limited Waiver process, using the Survey-Related Plan for Improvement (SPFI) process that will be managed and tracked by the CMS regional office
• Managing the survey-related equivalency process, as defined by CMS, using Salesforce and the SOC to manage and track the CMS regional office action
• Removing the six-month automatic extension
• No longer granting requested extensions

Joint Commission leadership, after reviewing the restrictions being placed on the SOC, has determined that the Basic Building Information and PFI components of the SOC no longer fit the quality assessment program as it was originally designed and will become an optional management program that will not be a part of the survey process. Post survey, the CMS Time-Limited Waiver and equivalency components of the SOC will be used to manage survey-related deficiencies.

For an in-depth look at these changes, please see the Clarifications and Expectations column that begins on page 6 (not included in this document) of this issue. All questions may be directed to The Joint Commission Department of Engineering at 630-792-5900.
Clarifications and Expectations: Revising the Statement of Conditions™ (SOC)

PFI Rules, SPFI Rules, Time-Limited Waivers, and the End of the 6-Month Grace Period

An introduction from George Mills, MBA, FASHE, CEM, CHFM, CHSP, Director, Department of Engineering, The Joint Commission: This column clarifies standards expectations and provides strategies for challenging compliance issues, primarily in life safety and the environment of care, but also in the vital area of emergency management. You may wish to share the ideas and strategies in this column with your organization’s leadership. This month, the column discusses the Statement of Conditions™.

Despite a health care organization’s best efforts to proactively preserve life safety, there are times when a building feature or location is identified as being out of compliance. Organizations may discover a problem during regular building assessment, or a surveyor may uncover something during a survey event. The following sections describe what an organization must do when life safety issues are identified, both self-identified prior to a survey event and those identified by a Joint Commission surveyor during the survey event.

Finding Deficiencies During Building Assessment

A key element in The Joint Commission’s approach to maintaining life safety compliance is having accredited organizations actively participate in building assessment. This facilitates timely identification and resolution of fire safety risks and also reinforces the importance of remaining vigilant regarding compliance.

When building owners discover features or situations that are not compliant with The Joint Commission’s “Life Safety” (LS) chapter, which includes the National Fire Protection Association’s Life Safety Code® (LSC), the preferred course of action is for the health care organization to immediately correct the deficiency or resolve it as part of regularly scheduled corrective maintenance. However, in some instances, more time is necessary to complete the corrective action.

Historically, The Joint Commission has required organizations to complete and use the Statement of Conditions™ (SOC) as a proactive management approach to building fire safety since 1995. A significant component of the SOC is the Plan for Improvement (PFI) feature, in which the organization self-identifies the deficiencies and the amount of time required to complete the corrective actions. Yet the US Centers for Medicare & Medicaid Services (CMS) references Title 42: Public Health in the Code of Federal Regulations† (CFR), which prohibits a time frame of more than 60 days to complete corrective actions in the physical environment. Although there is an exception process referred to by CMS as a Time-Limited Waiver (TLW—described below). Specifically, at §488.28(d) the CFR states:

Ordinarily a provider or supplier is expected to take the steps needed to achieve compliance within 60 days of being notified of the deficiencies, but the State survey agency may recommend that additional time be granted by the Secretary in individual situations, if in its judgment, it is not reasonable to expect compliance within 60 days, for example, a facility must obtain the approval of its governing body, or engage in competitive bidding.

In response to §488.28(d) The Joint Commission modified the SOC in several areas effective August 1, 2016, including the following:

- Open, self-identified PFIs will no longer be posted to the final survey report.
- Self-identified PFIs have no role in the survey process.

† §488 is part of the Code of Federal Regulations and it specifically outlines the CMS survey, certification and enforcement procedures. It exists within Title 42: Public Health. Specifically, Chapter IV – Centers for Medicare & Medicaid Services, Department of Health and Human Services, Subchapter G – Standards and Certification, §488.1–488.865.

Life Safety Code® is a registered trademark of the National Fire Protection Association, Quincy, MA.
• The Joint Commission will no longer offer extensions.
• The automatic six-month grace period is no longer available.
• A new category to manage corrective actions has been created for use in resolving all survey-related deficiencies, the Survey-Related Plan for Improvement (SPFI).
• A new interim life safety measures (ILSM) feature is now included in both the PFI and SPFI process.

A key element in The Joint Commission’s approach to maintaining life safety compliance is having accredited organizations actively participate in building assessment.

• All Life Safety Code deficiencies identified during survey will result in a Requirement for Improvement (RFI) and have a 60-day Evidence of Standards Compliance (ESC).

Revisions to the Statement of Conditions™ Plan for Improvement
The PFI function is now independent from the survey event and will be isolated from any surveyor review or discussion. The organizations will have full control of these non-survey PFIs, so there is no longer an extension or grace period associated with them. The Joint Commission has made available to all accredited organizations the PFI function of the SOC as an optional management program, for those “Life Safety” chapter deficiencies identified outside the survey process. There are some advantages to maintaining a SOC, for example, health care organization leaders recognize the SOC as an established management program necessary for managing building integrity. In addition, using the SOC in budget and forecasting helps facilities managers explain building deficiencies and request funds to resolve them.

Survey-Related Plan for Improvement (SPFI)
As explained above, the PFI and basic building information (BBI) processes are optional for organizations, but if an organization has a survey deficiency that requires more than 60 days to address, the organization must use the SPFI process, which includes time-limited waivers (TLW). The SPFI is the management process for those “Life Safety” chapter deficiencies identified during survey and needing corrective action. Typically an SPFI is created when the corrective action will exceed the 60-day limitation as an RFI. This is a new tab in the electronic SOC tool. Selecting this tab displays the summary of open SPFIs. Also, a mandatory limit to the scheduled completion date of 60 days is built into the survey-related PFI to remind organizations that if the scheduled completion date (SCD) is beyond the mandatory 60-day requirement, a TLW is required. The program offers to redirect the user to the TLW site in the SOC to facilitate the request process. After the corrective action is completed the organization will need to close out the open SPFI.

Deficiencies Identified During Survey
Although most organizations strive to find and address life safety concerns, at times a surveyor may uncover a deficiency during survey, which will become an RFI. The organization will need to resolve survey-related deficiencies within 60 days from the end of survey, which aligns with the ESC process. If the deficiency is significant, the health care organization may need to request a TLW.

When the TLW is necessary, the revised SOC process requires the organization to create an SPFI. Included in the SPFI is a reminder not to exceed the scheduled completion date of 60 days. Following completion of the corrective action, the organization must close out the open SPFI.

Figure 1: Process for Requesting a Time-Limited Waiver

![Diagram](Image)
completion date. The SPFI documents the requested SCD that exceeds the 60-day ESC process and prompts the organization to submit a TLW. The request must include current, accurate information. After submitting the SPFI, the organization receives notification that their request has been received and will be evaluated and processed. This TLW request should be submitted within 45 days from the end of survey. The Joint Commission will evaluate the request and, for those organizations that use accreditation for deemed status purposes, forward it to the appropriate CMS regional office, within the required 60-day period.

After the regional office makes a decision regarding the TLW they will notify The Joint Commission. If acceptable to the Department of Engineering and the CMS regional office (for those organizations that use accreditation for deemed status purposes), The Joint Commission will update the organization’s SCD with the agreed-upon date and approve the TLW request, accept and update the SPFI related to the TLW, and document the approval of the SPFI and TLW in the History Audit Trail.

Failure to complete the corrective action on time will result in an accreditation decision of Accreditation with Follow-up Survey. For those situations in which the regional office does not approve the waiver, the requesting organization is expected to complete the corrective action within the original 60 days and follow the directions provided by the regional office.

Survey-related PFIs with a TLW must be completed on or before the date assigned by the CMS regional office.

Requesting an Equivalency

As of August 1, 2016, The Joint Commission will only be processing survey-related equivalency requests. When a corrective action related to a survey event poses a hardship to the organization; does not directly impact patient, staff, or visitor safety; the organization may submit an equivalency request to The Joint Commission. For those organizations seeking accreditation for deemed status purposes, the request will be reviewed and, if acceptable, forwarded to the CMS regional office for their decision.

For those deficiencies identified during survey that are significant—and other systems, methods or devices exist that may offset the deficiency—the organization may be eligible for an equivalency. The organization should create an SPFI stating it is requesting a TLW to evaluate and develop an equivalency submittal. Next, the organization should follow the detailed instructions for submitting an equivalency request in the SOC (refer to the Time Limited Waiver/Equivalency tab menu options).

Deemed status organizations must submit these survey-related equivalency requests to The Joint Commission, which will analyze, review, and (if acceptable) recommend the equivalency to the appropriate regional office for its review and final disposition. During the CMS regional office review period, the requesting organization is expected to maintain appropriate ILSM associated with the equivalency. For those organizations that do not use accreditation for deemed status purposes, The Joint Commission will review and work with the organization to achieve resolution that does not adversely affect the built environment.

Interim Life Safety Measures

ILSM are temporary provisions taken to ensure the LSC deficiencies do not impact patients, staff, or visitors. Effective July 1, 2016, the elements of performance (EPs) in Standard LS.01.02.01 were reordered to assist with the completion of the ILSM section that was added into the new PFI process and SPFI processes, (former EP 3 is now EP 1). When creating a new PFI or SPFI, an ILSM drop-down feature listing all 13 ILSM actions is now available for organizations to select.

Modifications to the Statement of Conditions™

The following are several other significant modifications to the SOC to help organizations manage building issues.

- **SPFI**
 - This is a new tab in the SOC at the home page. Selecting this tab opens the SPFI for completion. Also, a mandatory limit to the scheduled completion date of 60 days is created.

‡ For more information on the traditional and Fire Safety Evaluation System–related equivalencies, see the instructions in the SOC.
with a monitoring feature. The program offers to redirect the user to the TLW site to facilitate the request process.

- **Time-Limited Waivers**
 - The TLW must be submitted within 45 days to The Joint Commission for processing (see the Time-Limited Waiver/Equivalency menu for instructions).
 - The final disposition of the request is the responsibility of the CMS regional office for organizations that use accreditation for deemed status purposes, or the Department of Engineering for organizations that do not use accreditation for deemed status purposes.
 - The organization is to assume the request is approved unless told otherwise by the CMS regional office, or The Joint Commission.

- **Color highlighting feature to provide a visual alert of nearing completion date**
 - The SPFI will change color at 30 days from the scheduled completion date.
 - The SPFI will change color again at 15 days from the scheduled completion date.
 - The SPFI will change color a third time if the 60-day scheduled completion date is past due. This will result in an accreditation decision of Accreditation with Follow-Up Survey and an on-site survey event for failure to complete corrective actions within 60 days.

- **Extensions: No longer allowed**
 - Previously The Joint Commission allowed organizations to request Extensions (additional time beyond the projected completion date), when more time was needed to complete the corrective actions on self-identified PFIs. Effective August 1, 2016, The Joint Commission will no longer allow extensions. However, all PFIs are no longer associated with survey activity and are not reviewed by The Joint Commission during survey, and the organization may close and manage their PFIs as appropriate. If the organization needs additional time to respond to survey-related PFIs, however, the TLW option is available.

- **“Life Safety” chapter references required**
 - All self-identified and SPFI will have mandatory fields to ensure the identified deficiency is related to the “Life Safety” chapter.

- **Removed the 6-month grace period**
 - All SPFI have a “not to exceed” SCD. The only provision for requesting additional time beyond the 60-day ESC process is through the TLW process, which is approved by the regional office for organizations that use accreditation for deemed status purposes. For those organizations that do not use accreditation for deemed status purposes, the decision is made by the Department of Engineering.

This month’s column also appears in the August 2016 issue of *Environment of Care® News.*
Clarifications and Expectations: Clarifying Changes in the Life Safety Survey Process

An introduction from George Mills, MBA, FASHE, CEM, CHFM, CHSP, Director, Department of Engineering, The Joint Commission: This column clarifies standards expectations and provides strategies for challenging compliance issues, primarily in life safety and the environment of care, but also in the vital area of emergency management. You may wish to share the ideas and strategies in this column with your organization’s facilities leadership. This month the column discusses two topics: clarifications following survey and the recent changes to the Statement of Conditions™ (including the time-limited waiver).

Clarification and Documentation

The clarification process, outlined in “The Accreditation Process” chapter of the Comprehensive Accreditation Manual, allowed for an organization to clear a Requirement for Improvement (RFI) from its survey findings after the survey if it meets certain criteria. As announced previously in EC News (“Project REFRESH: The Joint Commission Revamps Standards and Survey Process,” June 2016), post-survey clarifications will no longer be accepted after January 1, 2017, in instances in which the organization was unable to produce required documentation at the time of survey, but then produces it after the survey.

The former policy gave organizations the opportunity to submit clarifying Evidence of Standards Compliance (ESC) after a survey event if they believed that their organization was in compliance with a particular standard at the time of survey, and had the documentation to prove it. The process limited the clarifications to those observations that met one or more of the following criteria:

- Audit data showing compliance
- Documentation was requested but could not be found on survey.
- The surveyor was incorrect in the observation.

Approximately 50% of all surveys in the Hospital Accreditation Program have organizations attempting to clarify, and more than half of those are related to documentation not being found or available during survey.

In January 2017 The Joint Commission retires the A and C scoring categories from the survey process. With the removal of the C category, the associated audits used in clarification will also go away. The ability to clarify an RFI by audit will end for all accreditation programs. The revised process will allow clarification to occur on site during the survey, and the survey team will document observations of noncompliance that have not been clarified on site as RFI.

In the Code

The Joint Commission uses the National Fire Protection Association’s body of codes in its standards and elements of performance for the physical environment. Documentation must be readily available as per NFPA 25-2011 (emphasis added):

4.3 Records

4.3.1* Records shall be made for all inspections, tests, and maintenance of the system and its components and shall be made available to the authority having jurisdiction upon request.

4.3.2 Records shall indicate the procedure performed (e.g., inspection, test, or maintenance), the organization that performed the work, the results, and the date.

4.3.3* Records shall be maintained by the property owner.

* Similar requirements appear in NFPA 72-2012, such as 14.6.3.2.

Not Documented, Not Done

Years ago, The Joint Commission adopted the familiar catch phrase “not documented, not done” to describe document-related observations. This included required policies, outcome documentation, and evidence of
policy compliance. However, the clarifications process allowed documents not found or unavailable during survey to be submitted following survey for Joint Commission central office review.

Effective January 2017, any unmet document-related request during survey results in an RFI. The surveyor will allow a reasonable amount of time for the organization to provide the documentation. If the documentation is provided within the time frame agreed on by the organization and surveyor, the organization will be found compliant if the documentation indicates that the organization is in compliance. If the documentation is not provided, the organization is not compliant and the surveyor will generate an RFI. The organization will not be able to clarify that RFI. Following survey, the organization will need to provide ESC that the required documentation has been addressed.

To assist organizations in compliance, The Joint Commission has developed an exhaustive checklist for hospitals, posted in the organization’s extranet. Although this checklist is optional, The Joint Commission hopes organizations will use it annually to ensure accessibility and confirm document locations. After the checklist is used, the organization will have a record of what documents may be requested and where they are located. During survey, when asked for a specific document, the organization will have the checklist to review and locate the requested documentation. Hopefully this will resolve “not documented, not done” issues during survey and improve compliance of document-related elements of performance.

Clarification opportunities will exist for those RFIs for which the organization believes it was in compliance at the time of survey. For example, if a surveyor were in a suite identified as an acceptable suite on life safety (LS) drawings and cited Standard LS.02.01.20, EP 13, for items stored in the corridor, the organization could clarify based on the fact that in a suite these items may be allowed. (Certain restrictions do apply, but for purposes of this example, we will assume compliance.) However, typos in a report are not acceptable reasons for clarification.

Upcoming Revisions to Standard LS.01.01.01

The following three elements of performance are pending final approval, intended for January 1, 2017, implementation:

- **EP 1** The organization assigns an individual to assess compliance with the *Life Safety Code*®, and manage the Statement of Conditions (SOC) when addressing survey-related deficiencies.
- **EP 2** In time frames defined by the organization, the organization performs a building assessment to determine compliance with the “Life Safety” chapter.
- **EP 3** When the organization plans to resolve a deficiency through a Survey-Related Plan for Improvement (SPFI) the organization meets the 60-day time frames.

NOTE: If the corrective action will exceed the 60-day time frame, the organization must request a time-limited waiver.

Life Safety Code® is a registered trademark of the National Fire Protection-Association, Quincy, MA.

Changes to the Statement of Conditions™

Effective August 1, 2016, The Joint Commission changed its survey process for the Life Safety (LS) standards. The Plan for Improvement (PFI) and Basic Building Information (BBI) are no longer reviewed as part of the survey event. The August 2016 Clarifications and Expectations column introduced these changes, and we’ll address them further this month.

These two components of the Statement of Conditions™ (SOC) have been converted to a management program available to the accredited organizations that will not impact the survey. Whereas in the past having a PFI might reduce the number of survey observations, having open PFIs will no longer impact the survey or reduce the number of RFIs. The Joint Commission anticipates that accredited organizations will continue to find value and use the SOC as a management program to identify deficiencies and use the PFI process to budget and manage resolution of these deficiencies.
During survey, surveyors will not be able to access the organization’s PFIs, and as such they will not impact survey. It is expected that the surveyors will find LS deficiencies during survey, and document those as RFIs. The Joint Commission will extract the first page of the organization’s SOC that displays the Sites and Buildings, the BBI, and the History Audit Trail. With the exception of the History Audit Trail, the surveyor will use these materials only for orientation to the organization and will not assess them for accuracy. The History Audit Trail will be extracted for the surveyor because it displays any equivalencies that the organization may have that need follow-up review.

Current PFIs that had been accepted prior to August 1, 2016, are expected to be completed on time by the organization but will not be reviewed during any subsequent survey activity. However, if there is further on-site survey activity and those deficiencies are observed, they will be documented as an RFI with a mandatory 60-day corrective action ESC (unless a time-limited waiver [TLW] is granted).

Interim Life Safety Measures and the Survey Process

Interim Life Safety Measures (ILSM) create alternative measures to protect occupants when a deficiency is identified and is pending corrective actions. The survey activity associated with evaluating ILSM policy is to request a completed project that included implementing the ILSM policy to review and evaluate its effectiveness (LS.01.02.01, EP 1); it is not intended to search for deficiencies to cite.

In a similar manner, if a surveyor encounters a project with ILSM implementation, the surveyor should not be citing the project deficiencies as RFIs, as the ILSM is already providing interim measures to reduce the impact of the deficiencies. However, if the ILSM policy is not being followed, an RFI will be generated for not following policy at the specific EP related to noncompliance (for example, LS.01.02.01, EPs 2–14).

Time-Limited Waivers

The major changes to the SOC occurred for two reasons: (1) Joint Commission leadership wanted to maintain the SOC as a resource to its customers, although the six-month automatic extension was a concern. (2) The US Centers for Medicare & Medicaid Services (CMS) has a rule in the *Federal Register*, §488.28(d), which states

Ordinarily a provider or supplier is expected to take the steps needed to achieve compliance within 60 days of being notified of the deficiencies, but the State survey agency may recommend that additional time be granted by the Secretary in individual situations, if in its judgment, it is not reasonable to expect compliance within 60 days; for example, a facility must obtain the approval of its governing body, or engage in competitive bidding.

The 60-day limit to achieve compliance conflicts with the Plan for Improvement (PFI) process of allowing the organization to identify how much time is needed to complete the corrective actions. Therefore, after evaluation, The Joint Commission removed the PFI from survey process and made the SOC an optional management program for its customers.

All LS deficiencies are now documented as RFIs. As an RFI, they must achieve compliance and submit ESC within 60 days. For those deficiencies that can be completed within this time frame, the organization may manage the corrective actions by work order or any other internal process to show compliance. If during this 60-day period a post-survey event is scheduled, such as a CMS deficiency survey (within 45 days from the last day of survey), the organization must be able to show progress toward compliance (for example, a work order).

For those corrective actions that will require more than 60 days to complete, the organization will need to submit a Survey-related Plan for Improvement (SPFI) requesting more time. The request is for a TLW, and will be evaluated by The Joint Commission and then forwarded with recommendations to the CMS Regional Office for final dispensation. To begin the process, the organization shall create an SPFI in the SOC by selecting the SPFI tab on the home page. This opens the SPFI form for the organization to complete. When the organization enters the survey end date and then a Scheduled Completion Date that exceeds the allowed 60 days, a popup screen appears asking if the organization wants to request the TLW. Selecting “OK” brings the user to a TLW Form to complete. After the user selects “SUBMIT,” the user will receive an e-mail confirmation. This e-mail serves as a receipt
if the organization is surveyed with a follow-up survey (such as the CMS Deficiency Survey mentioned previously).

After the request is submitted, The Joint Commission reviews the request. For those organizations not seeking accreditation for deemed status purposes, the Department of Engineering reviews and responds directly back to the requestor. For those organizations seeking accreditation for deemed status purposes, the Department of Engineering reviews the request and, if appropriate, forwards it to the Regional Office for review. The final decision will be entered into the organization’s History Audit Trail and the SPFI is accepted with the requested date (or modified if needed). This action then allows the tracking component of the SPFI to begin. When the SPFI is 30 days prior to the Scheduled Completion Date (SCD), the SPFI entry turns blue; at 15 days prior to the SCD, it turns yellow. If the SPFI reaches the SCD and is not resolved/closed, it will turn red and an e-mail is sent to the Department of Engineering for further action.

Equivalencies

The Joint Commission will manage only equivalencies that are related to a survey event and will no longer process proactive equivalency/waiver requests that are not related to a survey event. Those organizations that proactively identify conditions to which an equivalency may have applied (but are outside the survey process) could work with their CMS Regional Office. After the deficiency is identified as an RFI, the organization should create a SPFI requesting additional time to develop the equivalency request. Once the equivalency request is prepared, submit it to The Joint Commission using the TLW/Equivalency tab in the SOC and follow the instructions provided there.

This month’s column also appears in the August 2016 issue of *Environment of Care® News*.

Joint Commission Perspectives®, October 2016, Volume 36, Issue 10
Copyright 2016 The Joint Commission
Appendix A: Resources

Print Resources

JCR periodical articles can be purchased on PubMed via Ingenta (http://www.ingentaconnect.com/).

Electronic Resources

The Joint Commission: http://www.jointcommission.org

Joint Commission Resources: http://www.jcrinc.co

NOTE: The Internet is an ever-evolving environment and links are subject to change without notice.
Appendix B: Faculty Biographies

NOTE: These presenters do not have any financial arrangements or affiliations with corporate organizations that either provide educational grants to this program or may be referenced in this activity. These presenters have also attested that their discussions will not include any unapproved or off-label use of products.

George Mills, MBA, FASHE, CEM, CHFM, CHSP
Director
Department of Engineering
Division of Healthcare Improvement
The Joint Commission

George Mills is the Director for the Department of Engineering at The Joint Commission. In this role, Mr. Mills provides standards interpretation and education to The Joint Commission's surveyors and accredited organizations and is a nationally-recognized speaker. Previously, Mr. Mills served as Senior Engineer for the Standards Interpretation Group in the division of Accreditation and Certification Operations at The Joint Commission.

Mr. Mills has over 25 years of experience in the healthcare setting, and previous experience in the construction industry and structural steel fabrication. Prior to joining The Joint Commission, he served as a Director of Facilities; held national positions related to Codes and Standards, including serving as Director of Codes & Compliance for ASHE; and served as a consultant.

Mr. Mills is a Fellow with the American Society for Healthcare Engineering (FASHE), a Certified Healthcare Facility Manager (CHFM), a Certified Energy Manager (CEM), a Certified Healthcare Safety Professional (CHSP). He is also a past President of HESNI – a local ASHE chapter.

Mr. Mills earned an MBA from California Coast University in Santa Ana, California.
Keith E. Pardoe, FDAI, DAHC, CDC, CDT
Founder and CEO
Door Safety, LLC and DoorSafety.com
Culpeper, Virginia

Keith E. Pardoe's career in the commercial door and hardware industry spans more than 30 years. His career began in the mid-1980s, working for a small door and hardware distributor company in central Pennsylvania. In the early 1990s he earned his Architectural Hardware Consultant (AHC) certification and Certified Door Consultant (CDC) certification from the Door and Hardware Institute (DHI). In 1996 he joined the DHI staff and became the Director of Education and Certification; a position he held for most of the 18 plus years he was employed there.

In 2004 Mr. Pardoe was awarded Distinguished Honors for his work in leading the development of the Institute's Fire Door Assembly Inspection training program and the Fire Door Assembly Inspector (FDAI) certification program. He authored publications for the Door Security & Safety Foundation (a sister organization of DHI) regarding the annual safety inspections of swinging egress and fire door assemblies. He retired from DHI in the summer of 2014 to pursue other opportunities in the industry.

In early 2016 Mr. Pardoe was appointed Chair of the National Fire Protection Association's (NFPA) technical committee on Fire Doors and Windows – the committee responsible for the development of NFPA 80, Standard for Fire Doors and Other Opening Protectives, and NFPA 105, Standard for Smoke Door Assemblies and Other Opening Protectives.

Today, Mr. Pardoe heads up his own consulting company specializing in the field of swinging egress and fire door assemblies. He continues to teach technical classes for DHI and DHI Canada and leads training sessions (online and in-person) for related industries. He can be contacted through his website www.PardoeConsultingLLC.com and through LinkedIn.

Kathy Tolomeo, CHEM, CHSP
Engineer
Department of Engineering
The Joint Commission

Kathy Tolomeo is an Engineer for the Department of Engineering at The Joint Commission. In this role, Mrs. Tolomeo provides standards interpretation, reviews survey reports, conducts Intracycle Monitoring conference calls, and serves as faculty for educational programs.

Mrs. Tolomeo joined The Joint Commission in 2013 with 12 years of experience in healthcare in Facilities Management as the Safety Manager/Officer. In addition to leading the Environment of Care and Life Safety Committees, she has been responsible for overseeing several construction projects, including a 100,000+ sq. ft. addition, multiple process improvements and efficiency initiatives related to regulatory compliance, life safety code management, risk assessments, environmental monitoring, hazardous materials and waste, security, and customer service.

Mrs. Tolomeo is a Certified Healthcare Environmental Manager (CHEM), Certified Healthcare Safety Professional (CHSP), and has leadership training by the Studer Group, GE, Six Sigma, and is a Certified Yellow Belt. Mrs. Tolomeo received her Bachelor of Science degree from St. Mary's University in Winona, Minnesota.
Appendix C: Continuing Education (CE) Accrediting Bodies

To be eligible for CE credit from any of the following accrediting bodies, you MUST view the video presentation and read the Resource Guide first. Then, complete the post test at http://twnlms.com/ by the due date listed online. See Appendix E.

The Joint Commission is accredited by the Accreditation Council for Continuing Medical Education (ACCME-AMA PRA Category 1™), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC) to provide continuing education for the healthcare team.

NOTE: No ACPE credit was provided for this program.

The Joint Commission is provider approved by the California Board of Registered Nursing, provider number CEP 6381, for 1 contact hour.

The Joint Commission is authorized to award 1.0 contact hour of pre-approved ACHE Qualified Education credit for this program toward advancement or recertification in the American College of Healthcare Executives. Participants in this program wishing to have the continuing education hours applied toward ACHE Qualified Education credit should indicate their attendance when submitting application to the American College of Healthcare Executives for advancement or recertification.

This activity has been approved by the National Association for Healthcare Quality (NAHQ) for 1.0 Certified Professional Healthcare Quality (CPHQ) credit.

The Joint Commission Enterprise has been accredited as an Authorized Provider by the International Association for Continuing Education and Training (IACET).

This education offering qualifies for 1.0 Certified Joint Commission Professional (CJCP) credit hours towards CJCP recertification. In order to obtain CJCP credit hours, an individual must first be certified before they start acquiring CJCP credit hours. CJCP credit hours will not be retroactive.

Full attendance at every session is a prerequisite for receiving full continuing education credits. If a participant needs to leave early, his or her continuing education credits will be reduced.

Successful completion of this CE activity includes the following:

- View the presentation and read the accompanying Resource Guide.
- Complete the online Evaluation Form and Post Test.
- A CE certificate/statement of credit can be printed online following successful completion of the Post Test and the Evaluation Form

NOTE: This information applies to The Joint Commission Resources Quality & Safety Network program titled, *Life Safety Code (LSC) and Statement of Conditions (SOC): An Update*, originally presented on Thursday, July 27, 2017 from 2:00 – 3:00 p.m. ET. There is no individual participant fee for this educational activity.
Appendix D: Discipline Codes Instructions

Some of our programs are accredited for more than one discipline. To ensure that we issue each participant a certificate by the appropriate accrediting body, we ask that you supply us with the following information: 1) two-digit discipline code. 2) followed by the position code (example: for a medical doctor, use 10 MD).

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Discipline Code</th>
<th>Position Code</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physician (CME)</td>
<td>10 MD</td>
<td></td>
<td>Medical Doctor</td>
</tr>
<tr>
<td></td>
<td>MDFP MD-Family Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDPS MD-Psychiatrist</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDPH MD-Public Health Certificate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDPP MD-Public Psychiatry Certificate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDAC MD-Area Clinical Needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDMF MD-Medical Faculty Certificate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSP MD-Medical Staff Physician</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDLL MD-Limited License</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DO Doctor of Osteopathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>12 HA</td>
<td></td>
<td>Hospital Administrator</td>
</tr>
<tr>
<td></td>
<td>ADM LTC Administrator</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OA Other Administrator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy</td>
<td>13 PH</td>
<td></td>
<td>Pharmacist (PharmD)</td>
</tr>
<tr>
<td></td>
<td>PHN Pharmacist, Nuclear</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHC Pharmacist, Consultant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PA Pharmacy Technician</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietary</td>
<td>14 RD</td>
<td></td>
<td>Registered Dietitian/Nutritionist</td>
</tr>
<tr>
<td></td>
<td>NC Nutrition Counselor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTR Dietetic Technician</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietary Manager</td>
<td>15 DOD</td>
<td></td>
<td>Dietary Manager</td>
</tr>
<tr>
<td>Counseling</td>
<td>16 MHC</td>
<td></td>
<td>Mental Health Counselor, Licensed</td>
</tr>
<tr>
<td></td>
<td>SW Social Worker, Licensed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OCT Other Counselor/Therapist</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MFT Marriage/Family Therapist, Licensed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>17 LTG</td>
<td></td>
<td>Laboratory Technologist/Professional</td>
</tr>
<tr>
<td></td>
<td>LT Laboratory Technician</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS Laboratory Supervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD Laboratory Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Therapy</td>
<td>18 PT</td>
<td></td>
<td>Physical Therapist</td>
</tr>
<tr>
<td></td>
<td>PTA Physical Therapy Assistant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational Therapy</td>
<td>19 OT</td>
<td></td>
<td>Occupational Therapist</td>
</tr>
<tr>
<td></td>
<td>OTA Occupational Therapy Assistant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory Therapy</td>
<td>20 RT</td>
<td></td>
<td>Respiratory Therapist, Registered</td>
</tr>
<tr>
<td></td>
<td>RTC Respiratory Therapist, Certified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RPNC Resp. Practitioner, Non-Critical Care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Records</td>
<td>21 RHA</td>
<td></td>
<td>Health Information Administrator</td>
</tr>
<tr>
<td></td>
<td>RHT Health Information Technician</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCS Coding Specialist</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCP Coding Specialist, Physician-Based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiology</td>
<td>22 RAD</td>
<td></td>
<td>Radiologic Technologist</td>
</tr>
<tr>
<td>Sonography</td>
<td>23 MS</td>
<td></td>
<td>Medical Sonographer</td>
</tr>
<tr>
<td>Athletic Training</td>
<td>24 AT</td>
<td></td>
<td>Athletic Trainer</td>
</tr>
<tr>
<td>HC Quality</td>
<td>25 HQP</td>
<td></td>
<td>Healthcare Quality Professional</td>
</tr>
<tr>
<td>Activity Professional</td>
<td>26 ADP</td>
<td></td>
<td>Profession Activity Director</td>
</tr>
<tr>
<td></td>
<td>ADC Activity Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAC Activity Assistant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACC Activity Consultant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse (CNE)</td>
<td>30 RN</td>
<td></td>
<td>Registered Nurse</td>
</tr>
<tr>
<td></td>
<td>ARNP Advanced RN Practitioner</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP Nurse Practitioner</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LPN Licensed Practical Nurse (or LVN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON Other Nursing Professional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td>33 PSY</td>
<td></td>
<td>Psychologist (non-MD)</td>
</tr>
<tr>
<td></td>
<td>PSYL Psychologist, Limited License</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Mgmt</td>
<td>35 CCM</td>
<td></td>
<td>Certified Case Manager</td>
</tr>
<tr>
<td>Nursing Assistant</td>
<td>45 CNA</td>
<td></td>
<td>Certified Nursing Assistant</td>
</tr>
<tr>
<td></td>
<td>RA Restorative Care Aide</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HSA Health Support Aide</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA Nurse Aide, Non-certified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NT Nursing Technician</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Medical Services</td>
<td>46 CFR</td>
<td></td>
<td>First Responder</td>
</tr>
<tr>
<td></td>
<td>EMTB EMT, Basic Level/EMT1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMTI EMT, Intermediate Level/EMT2/EMT3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMTP EMT, Paramedic Level/EMT4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTH Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Unit Coor</td>
<td>55 CHUC</td>
<td></td>
<td>Health Unit Coordinator, Certified</td>
</tr>
<tr>
<td>Other</td>
<td>27 OTH</td>
<td></td>
<td>Other</td>
</tr>
</tbody>
</table>

© 2017 Joint Commission Resources
Appendix E: Post-Test

To be eligible for CE credit, you MUST view the video presentation and read the Resource Guide first. Then complete the post-test at http://jcrqsn.twnlms.com/ by the due date listed online.

1. Modifications to The Joint Commission's Statement of Conditions (SOC) went into effect on ______, 2016.
 a. January 1
 b. July 1
 c. August 1
 d. December 31
2. The Joint Commission has made changes to the Statement of Conditions (SOC) in accordance with the requirements of the _____.
 a. American Society for Healthcare Engineering (ASHE)
 b. Centers for Disease Control and Prevention (CDC)
 c. Centers for Medicare & Medicaid Services (CMS)
 d. National Society of Professional Engineers (NSPE)
3. NFPA-80 restricts signage on a 3' by 7' fire door to _____ square inches or less.
 a. 100
 b. 150
 c. 200
 d. 250
4. Windows in fire-rated doors must contain wired glass.
 a. True
 b. False
5. A Time-Limited Waiver may be requested for Life Safety chapter deficiencies identified during survey if the time needed to correct the deficiency exceeds _____ days.
 a. 15
 b. 30
 c. 60
 d. 90
6. The request for a Time-Limited Waiver begins with the creation of a Survey-related Plan for Improvement (SPFI) in the Statement of Conditions (SOC).
 a. True
 b. False
7. An astragal is a _____.
 a. specific type of door latch
 b. strip that covers the gap between a pair of doors
 c. device used for propping a door open
 d. specific type of rubber gasket
8. A door commonly used in hospitals to prevent elopement is known as a/an _____ door.
 a. fire
 b. intermittent access
 c. smoke barrier
 d. delayed egress

9. Which of the following is key for a successful submission of a Time-Limited Waiver?
 a. Following the instructions provided via the Statement of Conditions
 b. Including all required information
 c. Providing sufficient details for text fields such as Description of Deficiency, etc.
 d. All of the above.

10. Healthcare organizations can complete and use the Statement of Conditions (SOC) as a proactive management approach to building fire safety.
 a. True
 b. False
Appendix F: JCRQSN Contact Information

General information, customer service issues, or program reception issues
JCRQSN Customer Service Team
support@jcrqsn.com
toll-free 1-888-219-4678

Questions or comments about JCRQSN educational programming
George Riccio
Executive Producer, Video and Audio Programs
Lean Six Sigma Certified Yellow Belt
Publications and Education Department
griccio@jcrinc.com
1-630-792-5428

Questions about continuing education
JCRQSN Continuing Education Support Team
support@jcrqsn.com
1-888-219-4678

Questions about standards
Joint Commission Standards Interpretation Group
1-630-792-5900

Questions about JCR education or other resources
JCR Customer Service Center
1-877-223-6866